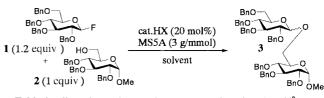
A Catalytic and Stereoselective Glycosylation with Glucopyranosyl Fluoride by Using Various Protic Acids

Hideki Jona, Hiroki Mandai, and Teruaki Mukaiyama


Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162-8601

(Received February 13, 2001; CL-010124)

A catalytic and stereoselective glycosylation with glucosyl fluoride was effectively performed by using a catalytic amount of various protic acids. When the glycosylation was carried out, for example, using perchloric acid (HClO₄) in diethyl ether (Et₂O), the major products were α -glycosides while β -stereoselectivity was observed when tetrakis(pentafluorophenyl)boric acid [HB(C₆F₅)₄] was used in a mixed solvent of trifluoromethylbenzene (BTF)–pivalonitrile ('BuCN) = (5:1). The stereoselectivity was controlled by not only the effect of solvent but also by the nature of counter anion of the catalyst such as B(C₆F₅)₄⁻ or ClO₄⁻.

To develop a new method for stereoselective glycosylation is one of the most important and fundamental topics in carbohydrate chemistry.¹ It was shown in our preceding report on catalytic glycosylation with glycosyl fluoride² by using carbocationic species paired with various counter anions³ that the role of counter anion as well as an effect of solvent was quite important for the control of stereoselectivity. The above result prompted us to study on this topic concerning stereoselection in glycosylation in further detail by using various protic acids.⁴ In this communication, we would like to report on an effective method for catalytic and stereoselective glycosylation of various glycosyl acceptors with glucosyl fluoride using HClO₄ in Et₂O or $HB(C_6F_5)_4$ in BTF-^tBuCN (5:1), which afforded the corresponding disaccharides in high yields with good to high α - or β -stereoselectivity. Further, the effects of the nature of counter anion as well as that of the solvent in controlling the stereoselectivities by using various protic acids in the glycosylation are shown.

In the first place, in-situ generation of strong protic acids was studied according to the modified procedure of Kevill⁵ or Kato⁶ by taking the reaction of various silver salts and ^tBuCl or ^tBuBr. As a result, the protic acids shown in Table 1 were effectively generated along with rapid precipitation of AgCl or AgBr. The generated catalyst in supernatant was used for glycosylation reaction of glycosyl acceptor 2 with glucosyl fluoride 1 in Et_2O at room temperature for 4 h, or in BTF-BuCN (5:1)⁷ at 0 °C for 2 h to afford the corresponding α - or β -disaccharides in high yield. Furthermore, it was clearly recognized that the stereoselectivities of resulted glycosides varied depending on the combination of a catalyst and a solvent. For example, when the glycosylation was carried out in Et₂O, α -glycoside was obtained as a major product by using a catalytic amount of TfOH, HClO₄ or nonafluorobutanesulfonic acid (Entries 1-4). On the other hand, β -stereoselectivity was observed when a catalytic amount of $HNTf_2$, $HSbF_6$ or $HB(C_6F_5)_4$ in BTF_4BuCN (5:1)⁷ was used (Entries 5–8). It is interesting to note that the stereoselectivities of the formed disaccharides decreased considerably when combinations of the catalyst and solvent system were reversed.³ After performing this stereoselectivity, the counter anions of the catalysts turned out to be as influential as the well-known effect of solvent⁸ although how these counter anions work has not yet been made clear so far. Moreover, formation of α -glycoside by using HClO₄ in Et₂O took place in better stereoselectivity compared to the case by using TfOH in Et₂O. On the other hand, β glycoside was best obtained when a catalytic amount of HB(C₆F₅)₄ was used in BTF-^tBuCN (5:1).

Table 1. Effect of the solvent and	d the counter anion of	f protic acid ^a
· _ · · _		N: 14 (01 (- (0))

Entry	Cat.	Yield /% (α / β) (Et ₂ O, rt, 4 h)	$ \begin{pmatrix} \text{Yield } /\% \ (\alpha / \beta) \\ (\text{BTF-}^{t}\text{BuCN} \ (5:1) \\ 0 ^{\circ}\text{C}, 2 \text{ h} \end{pmatrix} $
1	HOTI	98 (88 / 12)	>99 (47 / 53)
2	HOTf ^c	96 (88 / 12)	99 (49 / 51)
3	HCIO4 ^c	98 (92 / 8)	>99 (60 / 40)
4	HOSO ₂ C ₄ F ₉ ^d	99 (88 / 12)	96 (47 / 53)
5	HNTf2 ^b	>99 (49 / 51)	99 (9 / 91)
6	$HNTf_2^d$	>99 (50 / 50)	>99 (9 / 91)
7	HSbF6 ^d	99 (56 / 44)	>99 (12 / 88)
8	HB(C ₆ F ₅) ₄ ^e	95 (55 / 45)	99 (7 / 93)

^aIn the case of using HBF₄–OMe₂, HOTs, HOMs or TFA as a catalyst, almost no reaction was observed. ^bCommercial substrate. ^cProtic acid was generated from silver salt and ^tBuCl in toluene, and the supernatant was used. ^dProtic acid was generated from silver salt and ^tBuBr in toluene, and the supernatant was used. ^cProtic acid was generated from AgB(C₆F₅)₄⁹ and ^tBuBr in toluene–Et₂O (1:1), and the supernatant was used.

Next, glycosylations with other glucosyl donors such as thioglycoside, 1-hydroxy- and 1-O-acetyl sugars, and glycosyl trichloroacetimidate¹⁰ using $HClO_4$ or $HB(C_6F_5)_4$ were tried in order to examine the effects of counter anions and solvents (Table 2). Surprisingly, in every case, the glycosylation reaction proceeded smoothly to afford the corresponding disaccharide in high yield. Further addition of 1.2 equivalent of N-iodosuccinimide was essential in the case of using thioglycoside.¹¹ Moreover, in the case of using HClO₄ in Et₂O, all glucosyl donors examined gave high α -selectivities. On the contrary, β glycosides were predominantly obtained in high yields in the case of using $HB(C_6F_5)_4$ as a catalyst in BTF-^tBuCN (5:1) (Entries 1-5). And also, poor stereoselectivity was observed as in the glycosylation with glycosyl trichloroacetimidate under the conditions of HB(C_6F_5)₄ in Et₂O or HClO₄ in BTF-^tBuCN (5:1) (Entry 6). Next, various cationic species paired with the counter anions such as ClO_4^- or $B(C_6F_5)_4^-$ in Et_2O or $BTF-^tBuCN$ (5:1) or vice versa with glucosyl fluoride were examined (Table 3). As a result, every catalyst having ClO_4^- anion in Et_2O and that having $B(C_6F_5)_4^-$ anion in BTF_-^tBuCN (5:1) gave almost the same α - or β -stereoselectivities, respectively, whereas poor selectivity was observed when the combinations were reversed. These results shown in Table 2 and 3 also indicate that the nature of counter anion is very influential in controlling the stereoselectivity.

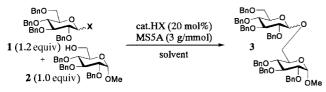
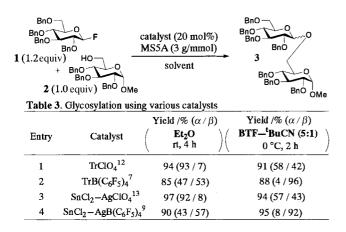
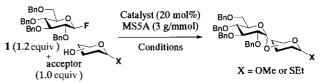



Table 2. Glycosylation with various donors

Entry	Donor	Yield $/\% (\alpha / \beta)$ (cat. HClO ₄ ^a , rt Et ₂ O, 4 h	Yield $/\% (\alpha / \beta)$ (cat.HB(C ₆ F ₅) ₄ ^b , 0 °C) BTF- ^t BuCN (5:1), 2 h/
1	SEt (β)	trace (-)	9 (11 / 89)
2	SEt $(\beta)^{c}$	89 (90 / 10)	95 (11 / 89)
3	OH (mix)	93 (92 / 8)	93 (8 / 92)
4	OAc (α)	93 (92 / 8)	89 (9 / 91)
5	$OC=N(H)CCl_3(\beta)$	99 (91 / 9)	97 (10 / 90)
6	OC=N(H)CCl ₃ (β)	97 (43 / 57) ^d	95 (54 / 46) ^e


^aProtic acid was generated from AgClO₄ and ^bBuCl in toluene, and the supernatant was used. ^bProtic acid was generated from AgB(C₆F₅)₄⁹ and ^bBuBr in toluene – Et₂O (1:1), and the supernatant was used. ^cIn this reaction, 1.2 equiv of NIS was added and stirred for 15 minutes. ^dThe reaction was carried out by using HB(C₆F₅)₄ as a catalyst. ^cThe reaction was carried out by using HClO₄ as a catalyst.

Finally, in order to extend the scope of the present glycosylation using protic acids, glycosylation of various glycosyl acceptors were tried in Et₂O at 0 °C or in BTF-^tBuCN (5:1) at -20 °C (Table 4). In all cases, the desired disaccharides were obtained in high yields with high stereoselectivityies even when an acceptor having thioglycosidic linkage was used.

Thus, α - or β -stereoselective glycosylation with a glucosyl fluoride was achieved by using a catalytic amount of protic acids in appropriate solvents such as HClO₄ in Et₂O or HB(C₆F₅)₄ in BTF–^tBuCN (5:1), respectively. It should be noted again that the role of counter anion as well as the effect of solvent is quite important for the control of stereoselectivity in glycosylation.

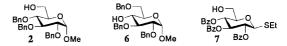

Further studies on the control of stereoselectivity in glycosylaion using various glycosyl donors and acceptors, and onepot sequential synthesis of trisaccharides are now in progress.

Table 4. Glycosylation using HClO ₄ or HB(C_6F_5) ₄ as a c	catalyst
---	----------

Entry	Acceptor	Catalyst	Conditions	Time	Yield /% ($lpha$ / eta)
1	2	HClO ₄	A ^a	6	94 (93 / 7)
2	2	$HB(C_6F_5)_4$	Bp	6	97 (4 / 96)
3	6	HClO ₄	A ^a	7	93 (83 / 17)
4	6	$HB(C_6F_5)_4$	B ^b	11	95 (8 / 92)
5	7	HClO ₄	A ^a	4	92 (89 / 11)
6	7	$HB(C_6F_5)_4$	Bb	2	89 (5 / 95)

^aThe reaction was carried out in Et_2O at 0 °C. ^bThe reaction was carried out in $BTF-^{t}BuCN$ (5:1) at-20 °C.

The present research is partially supported by Grant-in-Aids for Scientific Research from Ministry of Education, Science, Sports and Culture.

References and Notes

- Reviews: K. Toshima and K. Tatsuta, *Chem. Rev.*, **93**, 1503 (1993); K. Suzuki and T. Nagasawa, *J. Synth. Org. Chem. Jpn.*, **50**, 378 (1992).
- Reviews on glycosyl fluoride: M. Shimizu, H. Togo, and M. Yokoyama, *Synthesis*, **1998**, 799; K. Toshima, *Carbohydr. Res.*, **327**, 15 (2000).
- 3 M. Yanagisawa and T. Mukaiyama, Chem. Lett., 2001, 224.
- T. Mukaiyama, K. Takeuchi, H. Jona, H. Maeshima, and T. Saitoh, *Helv. Chim. Acta*, 83, 1901 (2000); T. Mukaiyama, H. Jona, and K. Takeuchi, *Chem. Lett.*, 2000, 696; H. Jona, K. Takeuchi, and T. Mukaiyama, *Chem. Lett.*, 2000, 1278.
- 5 D. N. Kevill and R. F. Sutthoff, *J. Chem. Soc.*, *Perkin Trans* 2, **1977**, 201.
- 6 T. Kato, M. Tanaka, M. Hoshikawa, and M. Yagi, *Tetrahedron Lett.*, **39**, 7553 (1998).
- 7 Since the melting point of pivalonitrile is 15 °C, the reaction was carried out in the mixed solvent of pivalonitrile and trifluoromethylbenzene at 0 °C; K. Takeuchi and T. Mukaiyama, *Chem. Lett.*, **1998**, 555.
- 8 G. H. Veeneman, in "Carbohydrate Chemistry," ed. by G. -J. Boons, Blackie Academic & Professional, London (1998), p. 105.
- 9 T. Mukaiyama, H. Maeshima, and H. Jona, *Chem. Lett.*, 2001, 388.
- 10 R. R. Schmidt and J. Michel, Angew. Chem., Int. Ed. Engl., 19, 731 (1980).
- G. H. Veeneman, S. H. van Leeuwen, and J. H. van Boom, *Tetrahedron Lett.*, **31**, 1331 (1990); P. Konradsson, D. R. Mootoo, R. E. McDevitt, and B. Fraser-Reid, *J. Chem. Soc.*, *Chem. Commun.*, **1990**, 270.
- 12 T. Mukaiyama, S. Kobayashi, and S. Shoda, *Chem. Lett.*, **1984**, 907.
- 13 T. Mukaiyama, Y. Murai, and S. Shoda, *Chem. Lett.*, **1981**, 431.